Affine group

It is the Lie group given by $GL(n)\times \mathbb{R}^n$.

We have the product

$$ ( A , v ) \left( A _ { 1 } , v _ { 1 } \right) = \left( A A _ { 1 } , A v _ { 1 } + v \right) $$

It represents affine transformations of $\mathbb{R}^n$ into itself.

It is a semidirect product

$$ Aff(\mathbb{R}^n)= \mathbb{R}^{n} \rtimes GL\left(n \right) $$

We can see it proceeding like for the Euclidean group.

________________________________________

________________________________________

________________________________________

Author of the notes: Antonio J. Pan-Collantes

antonio.pan@uca.es


INDEX: